ON THE EVALUATION OF CERTAIN SINGULAR INTEGRALS WITH A KERNEL OF THE CAUCHY TYPE

(O VYCHISLENII NEKOTORYKH SINGULIARNYKH INTEGRALOV S IADRAMI TIPA KOSHI)

PMM Vol.23, No.6, 1959, pp. 1074-1082
G.N. PYKHTEEV
(Moscow)
(Received 1 September 1959)

In the solution of many problems of hydro-aerodynamics [1,2] and in the theories of elasticity [3,4] and filtration [5,6], there occur integrals with kernels of the Cauchy type defined on intervals of the real axis. Some of these integrals can be reduced by means of simple transformations to either one of two integrals of the following type:

$$
\begin{array}{cc}
J(x)=\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{t-x} d t & (-1 \leqslant x \leqslant 1) \\
J(x)=\frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{f(t)}{t-x} \frac{d t}{\sqrt{1-t^{2}}} & (-1 \leqslant x \leqslant 1) \tag{0.2}
\end{array}
$$

These integrals exist in the sense of Cauchy's principal value if the function $f(x)$ satisfies Hoelder's condition $[7,8]$ on the interval between the limits -1 and 1.

With the aid of the transformation of variables $x=\cos \theta, t=\cos \phi$, the integrals $J(x), I(x)$ can be written in the trigonometric form

$$
\begin{array}{ll}
J(\cos \theta)=\frac{1}{\pi} \int_{0}^{\pi} \frac{f(\cos \varphi)}{\cos \varphi-\cos \theta} \sin \phi d \varphi & (0 \leqslant \theta \leqslant \pi) \\
J(\cos \theta)=\frac{\sin \theta}{\pi} \int_{0}^{\pi} \frac{f(\cos \varphi)}{\cos \varphi-\cos \theta} d \varphi & (0 \leqslant \theta \leqslant \pi) \tag{0.4}
\end{array}
$$

In this form these integrals appear in the theory of wings [2,9]. There exist many types of integrals which can be transformed to one of the integrals $J(x)$ or $I(x)$ by means of simple transformations and, hence, to either one of them. For example, the known singular integrals whose
kernels are either the cotangent or logarithm, and which are met in the theory of waves and jets, can be reduced to the integrals $J(x)$ and $I(x)$ be means of the relations

$$
\begin{gather*}
\frac{1}{\pi} \int_{0}^{\pi} f(\cos \varphi) \operatorname{ctg} \frac{\theta-\varphi}{2} d \varphi=J(\cos \theta)+I(\cos \theta) \tag{0.5}\\
\frac{1}{\pi} \int_{0}^{\pi} \frac{d}{d \varphi} f(\cos \varphi) \ln \left|\sin \frac{\varphi-\theta}{2} \csc \frac{\varphi+\theta}{2}\right| d \varphi=J(\cos \theta) \tag{0.6}
\end{gather*}
$$

It is known that, due to the fact that the integrals $J(x)$ and $I(x)$ are singular, one cannot directly apply many formulas of mechanical quadrature [13] for the evaluation of these integrals, even though those formulas may be valid for ordinary Riemann integrals. However, if one takes into account the properties of the integrands. one may with the aid of various transformations obtain various formulas for mechanical quadratures that are applicable to singular integrals also. Such formulas of mechanical quadratures were obtained by Multhoop [9] for the integrals (0.3) and (0.4), by Kalandia [10$]$ for the integrals (0.1) and (0.2), and by Simonov [11] for the integral (0.5).

Below there are derived formulas which make it possible to obtain approximate expressions for the integrals $J(x)$ and $I(x)$ and to estimate the error in the approximation. The obtained formulas contain functions defined in terms of elementary functions or in terms of rapidly converging series. Tables are given for some of these functions.

1. Let us introduce into our consideration the Chebyshev polynomials of the first and second kind

$$
T_{n}(x)=\cos n \arccos x, \quad U_{n}(x)=\sin n \arccos x
$$

It is not difficult to shpw that $T_{n}(x)$ and $U_{n}(x)$ satisfy the relations

$$
\begin{equation*}
\frac{1}{\pi} \int_{-1}^{1} \frac{U_{n}(t)}{t-x} d t=-T_{n}(x), \quad \frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{T_{n}(t)}{t-x} \frac{d t}{\sqrt{1-t^{2}}}=\iota_{n}(x) \tag{1.1}
\end{equation*}
$$

Let the function $f(x)$, which appears in the integrals $J(x)$ and $I(x)$, satisfy the Hoelder condition on the interval between the limits -1 and 1. Then the integrals $J(x)$ and $I(x)$ can be represented in the form of the series

$$
\begin{array}{ll}
J(x)=\sum_{n=1}^{\infty}-b_{n} T_{n}(x) & (-1 \leqslant x \leqslant 1) \\
I(x)=\sum_{n=1}^{\infty} a_{n} U_{n}(x) & (-1 \leqslant x \leqslant 1) \tag{1.3}
\end{array}
$$

where

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{-1}^{1} f(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}}, \quad b_{n}=\frac{2}{\pi} \int_{-1}^{1} f(x) U_{n}(x) \frac{d x}{\sqrt{1-x^{2}}} \tag{1.4}
\end{equation*}
$$

Indeed, in this case it follows from the theory of the Fourier series that the function $f(x)$ can be represented on the interval between the limits -1 and l by means of a series in terms of Chebyshev polynomials of the first kind

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} T_{n}(x) \quad(-1<x<1) \tag{1.i}
\end{equation*}
$$

or in the form of a series in polynomials of the second kind

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} U_{n}(x) \quad(-1 \leqslant x \leqslant 1) \tag{1.6}
\end{equation*}
$$

Let us replace the function $f(x)$ in the integral $J(x)$ by the series (1.6) and in the integral (1.5) by the series (1.5). With the aid of the relation (1.1) we then obtain the formulas (1.2) and (1.3). The use of these formulas for the computation of the integrals $J(x)$ and $I(x)$ is not recommended, for the series (1.2) and (1.3) converge slowly, and the coefficients a_{n} and b_{n} must be evaluated by methods of numerical integration. In the case when the series appearing on the right-hand sides can be summed in a closed form, the formulas (1.2) and (1.3) give the exact values of the integrals $J(x)$ and $I(x)$. If the integrals $J(x)$ and $I(x)$ are given in the trigonometric forms (0.3) and (0.4), the equations (1.2) and (1.3) take on the form:

$$
\begin{array}{ll}
J(\cos \theta)--\sum_{n=1}^{\infty} b_{n} \cos n \theta & (0 \leqslant \theta \approx \pi) \\
I(\cos \theta)-\sum_{n=1}^{\infty} a_{n} \sin n \theta & (0 \leqslant \theta \leqslant \pi) \tag{1.8}
\end{array}
$$

The formulas (1.7) and (1.8) make it possible to use the results of the theory of trigonometric series in the investigation of the properties of the integrals $J(x)$ and $I(x)$.
2. Let us consider the functions defined on the interval between the limits -1 and 1 by the equations

$$
\begin{gather*}
{p_{1}}^{(s)}(x)=\sum_{n=2}^{\infty} \frac{1}{(2 n-1)^{s}} T_{9 n-1}(x), \quad p_{2}^{(s)}(x)=\sum_{n=2}^{\infty} \frac{1}{(\angle n)^{s}} T_{2 n}(x) \tag{2.1}\\
(s=1,2, \ldots ;-1 \leqslant x \leqslant 1)
\end{gather*}
$$

$$
\begin{gather*}
q_{1}^{(s)}(x)=\sum_{n=2}^{\infty} \frac{1}{(2 n-1)^{s}} U_{2 n-1}(x), \quad q_{2}^{(s)}(x)=\sum_{n=2}^{\infty} \frac{1}{(2 n)^{s}} U_{2 n}(x) \tag{2.2}\\
(s=1,2, \ldots ;-1 \leqslant x \leqslant 1)
\end{gather*}
$$

We shall point out certain properties of these functions. The functions $p_{1}^{(1)}(x)$ and $p_{2}^{(1)}(x)$ have singularities of the logarithmic type at the points $x=1$, and $x=-1$;

$$
p_{1}^{(1)}(x)=\frac{1}{4} \ln \frac{1+x}{1-x}-x, \quad p_{2}^{(1)}(x)=-\frac{1}{4} \ln 4\left(1-x^{2}\right)-\frac{1}{2}\left(2 x^{2}-1\right)
$$

while the functions $q_{1}^{(1)}(x)$ and $q_{2}^{(1)}(x)$ can be expressed on the interval between the limits -1 and 1 in the form

$$
q_{1}^{(1)}(x)=\frac{1}{4} \pi-\sqrt{1-x^{2}}, \quad q_{2}^{(1)}(x)=\frac{1}{4} \pi-\frac{1}{2} \arccos x-x \sqrt{1-x^{2}}
$$

The remaining functions are continuous on the entire interval between -1 and 1. We note also that $p_{2}(s)(x)$ and $q_{1}(s)(x)$ are even functions, while $p_{1}(s)(x)$ and $q_{2}(s)(x)$ are odd functions, i.e.

$$
\begin{align*}
p_{1}^{(s)}(-x) & =-p_{1}^{(s)}(x), & p_{2}^{(s)}(-x) & =p_{2}^{(s)}(x) \\
q_{1}^{(s)}(-x) & =q_{1}^{(s)}(x), & & q_{2}^{(s)}(-x)=-q_{2}^{(s)}(x) \tag{2.3}
\end{align*}
$$

If one makes use of the equations (1.1), it is easy to show that all the introduced functions satisfy the following integral relations:

$$
\begin{gather*}
\frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{p_{1}^{(s)}(t)}{t-x} \frac{d t}{\sqrt{1-t^{2}}}=q_{1}^{(s)}(x), \quad \frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{p_{2}^{(s)}(t)}{t-x} \frac{d t}{\sqrt{1-t^{2}}}=q_{2}^{(s)}(x) \\
\frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{(\operatorname{sign} t) q_{1}^{(s)}\left(i^{*}\right)}{t-x} \frac{d t}{\sqrt{1-t^{2}}}=p_{1}^{(s)}\left(x^{*}\right) \\
\frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{p_{2}^{(s)}\left(t^{*}\right)}{t-x} \frac{d t}{\sqrt{1-t^{2}}}=-(\operatorname{sign} x) q_{2}^{(s)}\left(x^{*}\right) \\
\frac{1}{\pi} \int_{-1}^{1} \frac{q_{1}^{(s)}(t)}{t-x} d t=-p_{1}^{(s)}(x), \quad \frac{1}{\pi} \int_{-1}^{1} \frac{q_{2}^{(s)}(t)}{t-x} d t=-p_{2}^{(s)}(x) \tag{2.4}\\
\frac{1}{\pi} \int_{-1}^{\frac{1}{*} \frac{p_{1}{ }^{(s)}\left(t^{*}\right)}{t-x} d t=-(\operatorname{sign} x) q_{1}^{(s)}\left(x^{*}\right), \quad \frac{1}{\pi} \int_{-1}^{1} \frac{(\operatorname{sign} t) q_{2}^{(s)}\left(t^{*}\right)}{t-x} d t=p_{2}^{(s)}} . \tag{*}
\end{gather*}
$$

where

$$
\begin{equation*}
x^{*}=\sqrt{1-x^{2}}, \quad t^{*}=\sqrt{1-t^{2}} \tag{2.6}
\end{equation*}
$$

The equations (2.3) make it possible to restrict the computation and study of the properties of the introduced functions to the interval between the limits 0 and l. By means of a change of variables $x=\cos \theta$, the functions $p_{1}{ }^{(s)}(x), p_{2}^{(s)}(x), q_{1}{ }^{(s)}(x)$ can be rewritten in the trigonometric forms:

$$
\begin{align*}
p_{1}{ }^{(s)}(\cos \theta)= & \sum_{n=2}^{\infty} \frac{\cos (2 n-1) \theta}{(2 n-1)^{s}}, \quad p_{2}{ }^{(s)}(\cos \theta)=\sum_{n=2}^{\infty} \frac{\cos 2 n \theta}{(2 n)^{s}} \\
& (s=1,2, \ldots ; 0 \leqslant \theta \leqslant \pi) \tag{2.7}\\
q_{1}{ }^{(s)}(\cos \theta)= & \sum_{n=2}^{\infty} \frac{\sin (2 n-1) \theta}{(2 n-1)^{s}}, \quad q_{2}{ }^{(s)}(\cos \theta)=\sum_{n=2}^{\infty} \frac{\sin 2 n \theta}{(2 n)^{s}} \tag{2.8}\\
& (s=1,2, \ldots ; 0 \leqslant \theta \leqslant \pi)
\end{align*}
$$

Such a form is convenient in the computation of these functions, since in this one does not have to deal with Chebyshev polynomials but with trigonometric functions. In the attached Tables $1-3$, the values of some of the functions considered are given, computed with a precision of four places. Tables 1 and 2 were computed with the aid of formulas (2.1) and (2.2); Table 3 was computed using formulas (2.7) and (2.8).

TABLE 1.

x	$p_{1}^{(1)}$						2	
0.0	0.0000	0.00	0.1534	3	-0.0840	-0.0111	0.0000	0.0
0.1	-0.0498	-0.0083	0.1459	0.0145	-0.0815	--0.0106	-0.0151	-0.0012
2	-0.098	-0.016	12	. 009	-0.0740	-0.000	-0.0289	-0.0023
0.3	-0.1452	-0.0233	0.0870	0.0058	-0.0614	-0.0073	-0.0399	-0.0031
0.4	-0.1882	-0.0289	0.0370	0.0010	--0.0435	-0.0045	-0.0466	-0.0034
0.5	-0.2253	-0.0325	-0.0246	-0.004	-0.0202	-0.0011	-0.0473	-0.0032
0.6	-0.2534	-0.0333	-0.0950	-0.0096	0.0086	0.0029	-0.0401	-0.0024
0.7	-0.2663	-0.0299	-0.1682	-0.0139	0.0431	0.0071	-0.0227	-0.0008
0.8	-0.2507	-0.0203	-0.2312	-0.0151	0.0829	0.0110	0.0080	0.0014
0.9	-0.1639	--0.0001	-0.2414	-0.0091	0.1242	0.0133	0.0582	0.0039
1.0	∞	0.0518	∞	0.0253	¢	0.0000	0,0000	0.0000

TABLE 2.

x	$p_{1}^{(1)}\left(x^{*}\right)$	$p_{1}^{(3)}\left(x^{*}\right)$	$p_{2}^{(1)}\left(x^{*}\right)$	$p_{2}^{(3)}\left(x^{*}\right)$	$q_{1}^{(2)}\left(x^{*}\right)$	$q_{1}^{(4)}\left(x^{*}\right)$	$q_{2}^{(2)}\left(x^{*}\right)$	$\mathrm{g}_{2}^{(4)}\left(x^{*}\right)$
0.0	∞	0.0518	∞	0.0253	0.0000	0.6000	0.0000	0.0000
0.1	0.5016	0.0455	0.3147	0.0200	0.0999	0.0050	0.0809	0.0023
0.2	0.1664	0.0335	-0.0018	0.0108	0.1317	0.0090	0.0945	0.0039
0.3	-0.0170	0.0194	-0.1546	0.0014	0.1386	0.0117	0.0856	0.0045
0.4	-0.1331	0.0049	-0.2284	-0.0067	0.1301	0.0130	0.0645	0.0042
0.5	-0.2075	0.0086	-0.2500	-0.0124	0.1106	0.0128	0.0372	0.0031
0.6	-0.2507	-0.0203	-0.2312	-0.0151	0.0829	0.0140	0.0080	0.0014
0.7	-0.2663	-0.0290	-0.1782	-0.0143	0.0484	0.0077	-0.0192	-0.0005
0.8	-0.2534	-0.0.1333	-0.0950	-0.0096	0.0086	0.0029	-0.0402	-0.0024
0.9	-0.2023	-0.0305	0.0161	--0.0008	-0.0358	-0.0034	-0.0476	-r.0034
1.0	0.0000	0.0000	0.1534	0.0123	-0.0840	-0.0111	0.0000	0.000

TABLE 3

*	$p_{1}^{(1)}(x)$	$p_{1}^{(3)}(x)$	$p_{2}^{(1)}$	$p_{2}^{(3)}(x)$	$q_{1}^{(2)}(x)$	$q_{1}^{(4)}(x)$	$q_{2}^{(2)}(x)$	$q_{2}^{(4)}$
	∞	. 0518	∞	. 025	0.0000	. 0000	. 0000	. 0000
5	0.5695	0.0468	0.3811	0.0210	0.0931	0.0044	0.0764	0.0021
10°	0.2333	0.0370	0.0589	0.0134	0.1264	0.0080	0.0938	0.0036
	0.0479	1. 0.0253	-0.1038	0.0052	0.1380	0.0108	0.0911	0.0044
	-0.0720	0.0133	-0.1932	0.0023	0.1366	0.0124	0.0777	0.0045
	-0.1531	0.0018	-0.0.2337	-0.0082	0.1265	0.0131	0.0587	0.0040
	-0.2075	-0.0086	-0.2500	-0.0124	0.1106	0.0128	0.0372	0.0031
	-0.2420	-0.017't	-0.2397	-0.0147	0.0909	0.0116	0.0157	0.0019
$\cos 40^{\circ}$	-0.2607	-0.0244	- -0.2124	-0.0152	0.0689	0.0098	-0.0041	0.0006
5°	--0.2664	-0.0294	-0.1733	-0.0141	0.0458	0.0074	-0.0210	-0.0007
	-0.2613	-0.0324	-0.1265	-0.0117	0.0227	0.0047	-0.0341	-0.0018
5°	-0.2472	-0.0334	-0.0758	--0.0083	0.0004	0.0018	-0.0430	-0.0027
	-0.22	-0.03	-0.0	-0.0043	--0.0202	-0.0011	-0.0473	-0.0032
	-0.1972	-0.0299	. 0240	-0.0001	-0.0387	-0.0038	-0.0473	-0.0034
	-0.16.38	-0.0259	0.0676	0.0039	-0.0545	-0.0062	-0.0433	-0.0033
5°	-0.1264	-0.0186	0.1038	0.0073	-0.0672	--0.0083	-0.0358	-0.0028
80°	-0.0859	-0.0142	0.1309	0.0100	-0.0765	-0.0098	-0.0255	-0.0020
85°	-0.0435	-0.0205	0.1477	0.0117	-0.0821	-0.0107	-0.0132	-0.0011
90°	0.0000	0.0000	01534	0.0123	-0.0840	-0.0111	0.0000	0.0000

3. We define the function $f^{(s)}(x)$ by means of the equation

$$
\begin{equation*}
f^{(s)}(x)=\left(\frac{d^{5}}{d \theta^{5}} f(\cos \theta)\right)_{\theta=\arccos x} \quad(s==0,1, \ldots) \tag{3.1}
\end{equation*}
$$

and call it the trigonometric derivative of order s of the function $f(x)$. We denote by $W_{y}{ }^{(2 k)}\left(M_{2 k} ;-1,1\right)$ the class of functions satisfying the following conditions. (1) An arbitrary function $f(x)$ belonging to this class possesses continuous trigonometric derivatives $f^{(s)}(x), \quad(s=0$, $1, \ldots$) up to the order ($2 k-1$), inclusive, on the interval between the limits $-1,1$ except at the point $x=0$. (2) The $2 k$-th trigonometric derivative of this function satisfies the inequality

$$
\begin{equation*}
\left|f^{(2 k)}(x)\right| \leqslant M_{2 h ;} \tag{3.2}
\end{equation*}
$$

(3) At the point $x=0$, the function $f(x)$ and its trigonometric derivatives $f^{(s)}(x)$ can have discontinuities of the first kind:

$$
\begin{equation*}
2 \boldsymbol{\gamma}^{(s)}-f^{(s)}(+0)-f^{(s)}(-0) \quad(s=0,4, \ldots 2 k) \tag{3.3}
\end{equation*}
$$

The class of functions $W_{\gamma}{ }^{(2 k)}\left(M_{2 k} ;-1,1\right)$ is a type of generalization of the class $W(r)(W ; a, b)$ considered by Nikol'skii [12, 13].

Let us introduce the notations:
$2 \tilde{\sim}_{1} 1^{(s)}=f^{(s)}(1)+f^{(s)}(-1), \quad 2 \gamma_{2}{ }^{(s)}=j^{(s)}(1)-f^{(s)}(-1) \quad(s=0,1, \ldots, 2 k)$

$$
\begin{equation*}
a_{1}^{*}=a_{1}, \quad a_{2}^{*}=a_{2}, \quad b_{1}^{*}=b_{1}, \quad b_{2}^{*}=b_{2} \tag{3.5}
\end{equation*}
$$

$$
a_{2 m}^{*}=a_{2 n}+\frac{4}{\pi} \sum_{s=1}^{k} \frac{(-1)^{s}}{(2 m)^{2}}\left((-1)^{m} \gamma^{(2 s-1)}-\gamma_{2}^{(2 s-1)}\right)
$$

$$
a_{2, i-1} *=a_{2 m-1}-\frac{4}{\pi} \sum_{s=1}^{k} \frac{(-1)^{s}}{(2 m-1)^{2 s}}\left((-1)^{m}(2 m-1) \gamma^{(2 s-1)}+\gamma_{1}^{(2 s-1)}\right)
$$

$$
\begin{equation*}
b_{2 m}{ }^{*}=b_{2 m}-\frac{4}{\pi} \sum_{s=1}^{k} \frac{(-1)^{s}}{(2 m)^{2 s-1}}\left((-1)^{m} \gamma^{2(s-1)}-\gamma_{2}{ }^{2(s-1)}\right) \tag{3.6}
\end{equation*}
$$

$$
b_{2 m-1}^{*}=b_{2 m-1}-\frac{4}{\pi} \sum_{s=1}^{k} \frac{(-1)^{s}}{(2 m-1)^{2 s}}\left((-1)^{m} \gamma^{(2 s-1)}-(2 m-1) \gamma_{1}^{2(s-1)}\right)
$$

where a_{n} and b_{n} are Fourier coefficients given by the formulas (1.4).
We introduce the number $N(n, k)$ by means of the defining equation:

$$
\begin{equation*}
N(n, k) \cdots 4(n+1)^{-2 k} \quad\left(1+\ln \frac{\pi}{2}+\frac{1}{2 k}+\frac{1}{2 n}+\ln n\right) \tag{3.7}
\end{equation*}
$$

Theorem 1. Let $f(x) \quad W_{y}{ }^{(2 k)}\left(M_{2 k} ;-1,1\right)$, then the following two representations are valid for the function $f(x)$ on the interval between the limits -1, l

$$
\begin{align*}
& f(x)= \frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{1}{ }^{(2 s-1)} p_{1}^{(2 s)}(x)-(\operatorname{sign} x) \gamma^{v^{(s-1)}} q_{1}^{(2 s-1)}\left(x^{*}\right)+\right. \tag{3.8}\\
& \therefore\left.\gamma_{2}^{(2 s-1)} p_{2}^{(2 s)}(x)-\gamma^{(2 s-1)} p_{2}^{(2 s)}\left(x^{*}\right)\right]+\frac{a_{0}}{2}+\sum_{m=1}^{n} a_{m}{ }^{*} T_{m}(x)+r_{n}{ }^{(1)}(x) \\
& f(x)=-\frac{4}{\pi} \sum_{*=1}^{k}(-1)^{s}\left[\gamma^{(2 s-1)} p_{1}^{(2 s)}\left(x^{*}\right)+\gamma_{1}^{2(s-1)} q_{1}^{(2 s-1)}(x)+\gamma_{2}^{2(s-1)} q_{2}^{(2 s-1)}(x)+\right. \\
&\left.\quad-(\operatorname{sign} x) \gamma^{-(s-1)} q_{2}^{(2 s-1)}\left(x^{*}\right)\right]+\sum_{m=1}^{n} b_{m}^{*} U_{m}(x)-r_{n}^{(2)}(x) \tag{3.9}
\end{align*}
$$

where $r_{n}{ }^{(1)}(x)$ and $r_{\boldsymbol{n}}{ }^{(2)}(x)$ satisfy the inequalities

$$
\begin{equation*}
\left|r_{n}^{(1)}(x)\right|<M_{2 k} N(n, k), \quad\left|r_{n}^{(2)}(x)\right|<M_{2 k} N(n, k) \tag{3.10}
\end{equation*}
$$

Proof. Let us apply the formula for integration by parts $2 k$ times to the integrals occurring in the equations (1.4). We then obtain the relations (3.6) where

$$
\begin{array}{ll}
a_{n}{ }^{*}=\frac{(-1)^{k}}{n^{2 k}} a_{n}^{(2 h)}, & a_{n}{ }^{(2 k)}=\frac{2}{\pi} \int_{-1}^{1} f^{(2 h)}(x) T_{n}(x) \frac{d x}{\sqrt{1-x^{2}}} \\
b_{n}{ }^{*}=\frac{(-1)^{k}}{n^{2 k}} b_{n}^{(2 k)}, & b_{n}{ }^{(2 k)}=\frac{2}{\pi} \int_{-1}^{1} f^{(2 k)}(x) U_{n}(x) \frac{d x}{\sqrt{1-x^{2}}} \tag{3.11}
\end{array}
$$

Substituting into the series (1.5) and (1.6) for a_{n} and b_{n} their expressions from (3.6), we obtain the equations (3.8) and (3.9) where

$$
r_{n}^{(1)}(x)=\sum_{m=n+1}^{\infty} a_{m}{ }^{*} T_{m}(x), \quad r_{n}{ }^{(2)}(x)=\sum_{m=n+1}^{\infty} b_{m}{ }^{*} U_{m}(x)
$$

The formulas (3.11) can be used for the determination a_{n} and b_{n}, if one knows the derivative $f^{(2 k)}(x)$.

We shall prove that $r_{n}{ }^{(1)}(x)$ and $r_{n}{ }^{(2)}(x)$ satisfy the equation (3.10). If we introduce into our consideration the sums

$$
\sigma_{m}{ }^{(1)}(x)=\sum_{v=1}^{m} a_{v}{ }^{(2 k)} T_{v}(x), \quad \sigma_{i n}{ }^{(2)}(x)=\sum_{v=1}^{m} b_{v}^{(2 k)} U_{v}(x)
$$

then we obtain the following relation for $r_{n}{ }^{(s)}(x) . s=1,2$:

$$
\begin{align*}
& \left|r_{n}^{(s)}(x)\right|=\left|\sum_{m=n+1}^{\infty} \frac{\sigma_{m}^{(s)}(x)-\sigma_{m-1}{ }^{(s)}(x)}{m^{2 k}}\right|=\quad(s=1,2) \\
& =\left|-\frac{\sigma_{n}^{(s)}(x)}{(n+1)^{2 k}}+\sum_{m=n+1}^{\infty}\left(\frac{1}{m^{2 k}}-\frac{1}{(m+1)^{2 k}}\right) \sigma_{m}^{(s)}(x)\right| \tag{3.12}
\end{align*}
$$

The function $f(x) \quad W_{\gamma}{ }^{2 k}\left(M_{2 k} ;-1,1\right)$ and hence the inequality (3.2) can be applied. It is, therefore, easy to show that

$$
\begin{equation*}
\left|\sigma_{m}^{(s)}(x)\right|<2 M_{2 k}\left(1+\ln \frac{\pi}{2}+\ln m\right) \quad(s=1,2) \tag{3.13}
\end{equation*}
$$

Let us estimate each term of the series (3.12) with the aid of (3.13), and by means of the sequence of inequalities

$$
\ln \frac{m+1}{m}<\frac{1}{m}, \quad \sum_{m=n+1}^{\infty} \frac{1}{(m+1)^{2 k+1}}<\frac{1}{2 k(n+1)^{2 k}}
$$

We obtain the result

$$
\left|r_{n}^{(s)}(x)\right|<M_{2 k} \frac{2}{(n+1)^{2 k}}\left(\begin{array}{c}
\left.2+2 \ln \frac{\pi n}{2}+\frac{1}{n}+\frac{1}{k}\right)=M_{2 k} N(n, k)
\end{array}\right.
$$

which was to be proved.
4. The results of the preceding section make it possible to obtain approximate formulas for the evaluation of the integrals $J(x)$ and $I(x)$.

Theorem 2. Let $f(x) \quad W_{\gamma}{ }^{(2 k)}\left(M_{2 k} ;-1,1\right)$, then

$$
\begin{equation*}
\left|J(x)-J_{n}^{(h)}(x)\right|<M_{2 k} N(n, k), \quad\left|I(x)-I_{n}^{(h)}(x)\right|<M_{2 k} N(n, k) \tag{4.3}
\end{equation*}
$$

Proof. Let us substitute for $f(x)$ its expressions from (3.8) and (3.9) into the integrals $J(x)$ and $I(x)$, respectively. Making use of the equations (1.1), (2.4) and (2.5), we obtain

$$
\begin{align*}
& J(x) \approx J_{n}^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{1}^{2(s-1)} p_{1}^{(2 s-1)}(x)+(\operatorname{sign} x) \gamma^{(2 s-1)} q_{1}^{(2 s)}\left(x^{*}\right)+\right. \\
& \left.+\gamma_{2}^{2(s-1)} p_{2}{ }^{(2 s-1)}(x)-\gamma^{2(s-1)} p_{2}{ }^{(s s-1)}\left(x^{*}\right)\right]-\sum_{m=1}^{n} b_{m}{ }^{*} T_{m}(x) \tag{4.1}\\
& I(x) \approx I_{n}^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[-\gamma^{2(s-1)} p_{1}^{(2 s-1)}\left(x^{*}\right)+\gamma_{1}^{(2 s-1)} q_{1}^{(2 s)}(x)-\right. \\
& \left.+\gamma_{2}{ }^{(2 s-1)} q_{2}{ }^{(28)}(x)+(\operatorname{sign} x) \gamma^{(2 s-1)} q_{2}{ }^{(2 s)}\left(x^{*}\right)\right] \div \sum_{m=1}^{n} a_{m}{ }^{*} C_{m}^{-}(x) \tag{4.2}\\
& \text { wherein }
\end{align*}
$$

$$
J(x)=J_{n}^{(h)}(x)+r_{n}^{(3)}(x), \quad I(x)=I_{n}^{(h)}(x)+r^{(4)}(x)
$$

where

$$
r_{n}^{(3)}(x)=-\sum_{m=n+1}^{\infty} b_{m}^{*} T_{n}(x), \quad r_{n}^{(4)}(x)=\sum_{m=n+1}^{\infty} a_{m} l_{m}^{-}(x)
$$

In a manner entirely analogous to the one used in the preceding section for the estimate of $r_{n}^{(1)}(x)$ and $r_{n}{ }^{(2)}(x)$, we can show that

$$
\left|r_{n}^{(3)}(x)\right|<M_{2 k} N(n, k), \quad\left|r_{n}^{(4)}(x)\right|<M_{2 k} N(n, k)
$$

Comparing these inequalities with the expression for $J(x)$ and $I(x)$ obtained above, we establish the validity of formulas (4.1), (4.2) and (4.3).

We call attention to three particular cases when the formulas (4.1) and (4.2) are simplified.
(1) The function $f(x)$ and its derivative are continuous at the point $x=0$.

$$
\begin{align*}
J(x) \approx & J_{n}{ }^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{1}{ }^{2(s-1)} p_{1}^{(2 s-1)}(x)+{\left.\gamma_{2}{ }^{2(s-1)} p_{2}{ }^{(2 s-1)}(x)\right]-}-\sum_{m=1}^{n} b_{m}{ }^{*} T_{m}(x), \quad\left|J(x)-J_{n}{ }^{(k)}(x)\right|<M_{2 k} N(n, k)\right. \\
I(x) \approx & I_{n}{ }^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{1}{ }^{(2 s-1)} q_{1}{ }^{(2 s)}(x)+\gamma_{2}^{(2 s-1)} q_{2}{ }^{(2 s)}(x)\right] \tag{4.4}\\
& +\sum_{m=1}^{n} a_{m}{ }^{*} U_{m}(x), \quad\left|I(x)-I_{n}{ }^{(k)}(x)\right|<M_{2 k} N(n, k)
\end{align*}
$$

(2) The function $f(x)$ is even, i.e. $f(-x)=f(x)$:

$$
\begin{align*}
J(x) & \approx J_{n}{ }^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{1}^{2(s-1)} p_{1}^{(2 s-1)}(x)+(\operatorname{sign} x) \gamma^{(2 s-1)} q_{1}^{(2 s)}\left(x^{*}\right)\right] \\
& -\sum_{m=1}^{n} b_{2 m-1}^{*} T_{2 m-1}(x), \quad\left|J(x)-J_{n}^{(k)}(x)\right|<M_{2 k} N(2 n-1, k) \tag{4.6}\\
I(x) & \approx I_{n}{ }^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{2}^{(2 s-1)} q_{2}^{(2 s)}(x)+(\operatorname{sign} x) \gamma^{(2 s-1)} q_{2}^{(2 s)}\left(x^{*}\right)\right]+ \\
& \quad+\sum_{m=1}^{n} a_{2 m}{ }^{*} U_{2 m}(x), \quad\left|I(x)-I_{n}^{(k)}(x)\right|<M_{2 h} N(2 n, k) \tag{4.7}
\end{align*}
$$

(3) The function $f(x)$ is odd, i.e. $f(-x)=-f(x)$:

$$
\begin{align*}
J(x) \approx & J_{n}^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[\gamma_{2}^{2(s-1)} p_{2}^{(2 s-1)}(x)-\gamma^{2(s-1)} p_{2}^{(2 s-1)}\left(x^{*}\right)\right]- \\
& -\sum_{m=1}^{n} b_{2 m}^{*} T_{2 m}(x), \quad\left|J(x)-J_{n}^{(h)}(x)\right|<M_{2 k} N(2 n, k) \tag{4.8}\\
I(x) & \approx I_{n}^{(k)}(x)=\frac{4}{\pi} \sum_{s=1}^{k}(-1)^{s}\left[-\gamma^{2(s-1)} p_{1}^{(2 s-1)}\left(x^{*}\right)+\gamma_{1}^{(2 s-1)} q_{1}^{(2 s)}(x)\right]-\tau^{-} \\
+ & \sum_{m=1}^{n} a_{2 m-1}^{*} U_{2 m-1}(x), \quad\left|I(x)-I_{n}^{(k)}(x)\right|<M_{2 k} N(2 n-1, k) \tag{4.9}
\end{align*}
$$

If the function $f(x)$ is even, then

$$
\begin{equation*}
J(-x)=-J(x), \quad l(-x)=-I(x) \tag{4.10}
\end{equation*}
$$

If the function $f(x)$ is odd, then

$$
\begin{equation*}
J(-x)=J(x), \quad I(-x)=I(x) \tag{4.11}
\end{equation*}
$$

In the nature of an example illustrating the presented method, we consider the integral

$$
\begin{equation*}
I(x)=\frac{\sqrt{1-x^{2}}}{\pi} \int_{-1}^{1} \frac{1 / 1 \pi|t|}{t-x} \frac{d t}{\sqrt{1-t^{2}}} \quad(-1 \leqslant x \leqslant 1) \tag{4.12}
\end{equation*}
$$

Here the function $f(x)=\pi|x| / 4$ is even. Hence, for the evaluation of this integral one can make use of the particular case (4.7) of the formula (4.2). Using formulas (3.1) to (3.6) we find

$$
\begin{gathered}
f^{(2 s-1)}(x)=(-1)^{s} \frac{\pi}{4}(\operatorname{sign} x) \sqrt{1-x^{2}}, \left.\quad f^{(2 s)}(x)=(-1)^{s} \frac{\pi}{4} \right\rvert\, x \vdots \\
\gamma_{2}^{(2 s-1)}=0, \quad \gamma^{(2 s-1)}=(-1)^{s} \frac{\pi}{4}, \quad M_{2 k}=\frac{\pi}{4} \\
a_{2 m}=\frac{(-1)^{m-1}}{4 m^{2}-1} \quad(m=1,2, \ldots) ; \quad a_{2}^{*}=\frac{1}{3}, \quad a_{2 m}^{*}=\frac{(-1)^{m-1}}{(2 m)^{2 h}\left(4 m^{2}-1\right)} \quad(m=2,3, \ldots)
\end{gathered}
$$

Substituting the obtained quantities into the formula (4.7), we obtain

$$
\begin{gather*}
I(x) \approx I_{n}{ }^{(k)}(x)=(\operatorname{sign} x) \sum_{s=1}^{k} q_{2}{ }^{(2 s)}\left(x^{*}\right)+\frac{1}{3} U_{2}(x)+\sum_{m=2}^{n} \frac{(-1)^{m-1}}{(2 m)^{2 k}\left(4 m^{2}-1\right)} U_{2 m}(x)(4.13) \\
\left|J(x)-I_{n}{ }^{(k)}(x)\right|<\frac{\pi}{4} N(2 n, k) \tag{4.14}
\end{gather*}
$$

The formula (4.13) makes it possible, with the use of the estimate (4.4), to evaluate the integral (4.12) with an arbitrarily prescribed degree of accuracy. On the other hand, with the aid of formula (1.3), or by
direct integrations, one can find the exact value of the integral (4.12) in terms of elementary functions

$$
J(x)=x \operatorname{Arth} \sqrt{1-x^{2}}=x \operatorname{Arch} \frac{1}{x}
$$

Since the considered integral is an odd function, one can restrict its evaluation to the interval between the limits 0 and 1 and compute the approximate value of the integral at various points of the interval between the limits 0 and 1 and compare these results with the exact values of the integral. We obtain the following results:

$x=0.0$	0.1	$\cos 80^{\circ}$	0.2	0.3	$\cos 70^{\circ}$	0.4	0.	0.
$f(x)=0.0000$	0.1497	0.2145	0.2292	0.2811	0.2968	0.313 '	0.3292	0.3
$J_{2}{ }^{2}(x)=0.0000$	0.1497	0.211	0.292	0.2811	0.2967	0.3134	0.3292	0.3295
$x=\cos 50^{\circ}$	0	$\cos 40^{\circ}$	0.8	$\cos 30^{\circ}$	0.	$\cos 20^{\circ}$	cos 10°	1.0
$I(x)=0.3248$	0.313	0.2922	0.2773	0.2379	0.2102	0.1674	0.0864	. 0000
$I_{2}{ }^{2}(x)=0.3248$	0.313.	1). 2922	0.2774	0.2380	0.2103	0.1673	0.0863	$0.0 n$

From this it can be seen that the approximate values of the integral (4.12), computed by means of the formulas (4.13) for $n=2$ and $k=2$, differ from the exact values only by one in the fourth decimal place. The estimate (4.14) in this case yields

$$
I(x)-I_{2}^{(2)}(x)<11.0162
$$

i.e. the formula (4.13) is actually more precise than the estimate (4.14) indicates.

In conclusion the author considers it his duty to express his appreciation to A.V. Bitsadze and S.M. Nikol'skii for the valuable advice he received from them in their appraisal of this work, and he also thanks V.M. Egorov and A.R. Shkirich for their help in the construction of the Tables.

BIBLIOGRAPHY

1. Sedov, L. I., Ploskie zadachi gidrodinamiki i aerodinamiki (Plane Problems of Hydrodynamics and Aerodynamics). Gostekhizdat, MoscowLeningrad, 1950.
2. Golubev, V.V., Lektsii po teorii kryla (Lectures on Wing Theory). Gostekhizdat, Moscow-Leningrad, 1949.
3. Muskhelishvili, N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of the Mathematical Theory of Elasticity). Izd. Akad. Nauk SSSR, Moscow, 1954.
4. Galin, L.A. Kontaktnye zadachi teorii uprugosti (Contact Problems of the Theory of Elasticity). Gostekhizdat, Moscow, 1953.
5. Polubarinova-Kochina, P. Ia., Teoriia dvizheniia gruntovykh vod ((Theory of the Motion of Ground Water). Gostekhizdat, Moscow, 1952.
6. Aravin, V.I. and Numerov, S.N., Teoriia dvizheniia zhidkostei i gazov u nedeformiruemoi poristoi srede (Theory of Motion of Liquids and Gases in a Non-Deformable Porous Medium). Gostekhizdat, Moscow, 1953.
7. Muskhelishvili, N. I., Singuliarnye integral'nye uravneniia (Singular Integral Equations). Gostekhizdat, Moscow-Leningrad, 1946.
8. Gakhov, F.D., Kraevaia zadacha (Boundary Value Problem). Fizmatgiz. Moscow, 1958.
9. Multhopp, H., Die Berechnung der Auftriebverteilung von Tragflügeln. Luftfahrtforschung, Vol. 15, No. 4, 1938.
10. Kalandiia, A. I., Ob odnom priamom metode resheniia uravneniia teorii kryla i ego primenenii k teorii uprugosti (On a direct method of the solution of the equation of wing theory and its applications to the theory of elasticity). Mat. sborn. Vol. 42 (84), No. 6, 1957.
11. Simonov, L.A., Raschet obtekaniia krylovykh profilei i postroenie profilia po raspredelenifu skorostei na ego poverkhnosti (Computation of the flow past wing profiles and the construction of an airfoil on the basis of the velocities distribution on its surface). PMM Vol. 11, No. 1, 1947.
12. Nikol'skii, S.M., K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami (On the problem of the appraisals of approximations by means of quadrature formulas). Usp. mat. nauk Vol. 5, No. 2 (36), - 1950.
13. Nikol'skii, S.M. Kvadraturnye formuly (Quadrature Formulas). Gostekhizdat, Moscow, 1958.
